Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

a^{\frac{1}{2}}+8^{3^{-1}}+625^{4^{-1}}+\left(\frac{1}{4}\right)^{-2}
Calculate 2 to the power of -1 and get \frac{1}{2}.
a^{\frac{1}{2}}+8^{\frac{1}{3}}+625^{4^{-1}}+\left(\frac{1}{4}\right)^{-2}
Calculate 3 to the power of -1 and get \frac{1}{3}.
a^{\frac{1}{2}}+2+625^{4^{-1}}+\left(\frac{1}{4}\right)^{-2}
Calculate 8 to the power of \frac{1}{3} and get 2.
a^{\frac{1}{2}}+2+625^{\frac{1}{4}}+\left(\frac{1}{4}\right)^{-2}
Calculate 4 to the power of -1 and get \frac{1}{4}.
a^{\frac{1}{2}}+2+5+\left(\frac{1}{4}\right)^{-2}
Calculate 625 to the power of \frac{1}{4} and get 5.
a^{\frac{1}{2}}+7+\left(\frac{1}{4}\right)^{-2}
Add 2 and 5 to get 7.
a^{\frac{1}{2}}+7+16
Calculate \frac{1}{4} to the power of -2 and get 16.
a^{\frac{1}{2}}+23
Add 7 and 16 to get 23.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+8^{3^{-1}}+625^{4^{-1}}+\left(\frac{1}{4}\right)^{-2})
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+8^{\frac{1}{3}}+625^{4^{-1}}+\left(\frac{1}{4}\right)^{-2})
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+2+625^{4^{-1}}+\left(\frac{1}{4}\right)^{-2})
Calculate 8 to the power of \frac{1}{3} and get 2.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+2+625^{\frac{1}{4}}+\left(\frac{1}{4}\right)^{-2})
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+2+5+\left(\frac{1}{4}\right)^{-2})
Calculate 625 to the power of \frac{1}{4} and get 5.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+7+\left(\frac{1}{4}\right)^{-2})
Add 2 and 5 to get 7.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+7+16)
Calculate \frac{1}{4} to the power of -2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{1}{2}}+23)
Add 7 and 16 to get 23.
\frac{1}{2}a^{\frac{1}{2}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{1}{2}a^{-\frac{1}{2}}
Subtract 1 from \frac{1}{2}.