Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(a^{6}-x^{4}\right)\left(a^{6}+x^{4}\right)
Rewrite a^{12}-x^{8} as \left(a^{6}\right)^{2}-\left(x^{4}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-x^{4}+a^{6}\right)\left(x^{4}+a^{6}\right)
Reorder the terms.
\left(a^{3}+x^{2}\right)\left(a^{3}-x^{2}\right)
Consider -x^{4}+a^{6}. Rewrite -x^{4}+a^{6} as \left(a^{3}\right)^{2}-\left(-x^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x^{2}+a^{3}\right)\left(-x^{2}+a^{3}\right)
Reorder the terms.
\left(-x^{2}+a^{3}\right)\left(x^{2}+a^{3}\right)\left(x^{4}+a^{6}\right)
Rewrite the complete factored expression.