Solve for s
s=-\frac{a-4}{a-8}
a\neq 8
Solve for a
a=\frac{4\left(2s+1\right)}{s+1}
s\neq -1
Share
Copied to clipboard
a\left(s+1\right)=\left(s+1\right)\times 8-4
Variable s cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by s+1.
as+a=\left(s+1\right)\times 8-4
Use the distributive property to multiply a by s+1.
as+a=8s+8-4
Use the distributive property to multiply s+1 by 8.
as+a=8s+4
Subtract 4 from 8 to get 4.
as+a-8s=4
Subtract 8s from both sides.
as-8s=4-a
Subtract a from both sides.
\left(a-8\right)s=4-a
Combine all terms containing s.
\frac{\left(a-8\right)s}{a-8}=\frac{4-a}{a-8}
Divide both sides by a-8.
s=\frac{4-a}{a-8}
Dividing by a-8 undoes the multiplication by a-8.
s=\frac{4-a}{a-8}\text{, }s\neq -1
Variable s cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}