Solve for b
b=-\frac{a}{8}+x
Solve for a
a=8\left(x-b\right)
Graph
Share
Copied to clipboard
a=8x-8b
Use the distributive property to multiply 8 by x-b.
8x-8b=a
Swap sides so that all variable terms are on the left hand side.
-8b=a-8x
Subtract 8x from both sides.
\frac{-8b}{-8}=\frac{a-8x}{-8}
Divide both sides by -8.
b=\frac{a-8x}{-8}
Dividing by -8 undoes the multiplication by -8.
b=-\frac{a}{8}+x
Divide a-8x by -8.
a=8x-8b
Use the distributive property to multiply 8 by x-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}