Solve for a
a=\frac{4b}{3b+1}
b\neq -\frac{1}{3}
Solve for b
b=\frac{a}{4-3a}
a\neq \frac{4}{3}
Share
Copied to clipboard
a+3ab=4b
Add 3ab to both sides.
\left(1+3b\right)a=4b
Combine all terms containing a.
\left(3b+1\right)a=4b
The equation is in standard form.
\frac{\left(3b+1\right)a}{3b+1}=\frac{4b}{3b+1}
Divide both sides by 3b+1.
a=\frac{4b}{3b+1}
Dividing by 3b+1 undoes the multiplication by 3b+1.
4b-3ab=a
Swap sides so that all variable terms are on the left hand side.
\left(4-3a\right)b=a
Combine all terms containing b.
\frac{\left(4-3a\right)b}{4-3a}=\frac{a}{4-3a}
Divide both sides by 4-3a.
b=\frac{a}{4-3a}
Dividing by 4-3a undoes the multiplication by 4-3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}