Solve for k
k=\frac{2a\cos(\frac{a}{2})-\pi \sin(\frac{a}{2})}{4\pi \cos(\frac{a}{2})}
\nexists n_{1}\in \mathrm{Z}\text{ : }a=2\pi n_{1}+\pi
Share
Copied to clipboard
2k\pi +\frac{\pi }{2}\tan(\frac{a}{2})=a
Swap sides so that all variable terms are on the left hand side.
2k\pi =a-\frac{\pi }{2}\tan(\frac{a}{2})
Subtract \frac{\pi }{2}\tan(\frac{a}{2}) from both sides.
4k\pi =2a-\pi \tan(\frac{a}{2})
Multiply both sides of the equation by 2.
4\pi k=-\pi \tan(\frac{a}{2})+2a
The equation is in standard form.
\frac{4\pi k}{4\pi }=\frac{-\pi \tan(\frac{a}{2})+2a}{4\pi }
Divide both sides by 4\pi .
k=\frac{-\pi \tan(\frac{a}{2})+2a}{4\pi }
Dividing by 4\pi undoes the multiplication by 4\pi .
k=\frac{-\tan(\frac{a}{2})+\frac{2a}{\pi }}{4}
Divide 2a-\pi \tan(\frac{a}{2}) by 4\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}