Solve for k
\left\{\begin{matrix}k=-\frac{a}{\sqrt{v}}\text{, }&v>0\\k\in \mathrm{R}\text{, }&v=0\text{ and }a=0\end{matrix}\right.
Solve for a
a=-\sqrt{v}k
v\geq 0
Share
Copied to clipboard
\left(-k\right)\sqrt{v}=a
Swap sides so that all variable terms are on the left hand side.
-\sqrt{v}k=a
Reorder the terms.
\left(-\sqrt{v}\right)k=a
The equation is in standard form.
\frac{\left(-\sqrt{v}\right)k}{-\sqrt{v}}=\frac{a}{-\sqrt{v}}
Divide both sides by -\sqrt{v}.
k=\frac{a}{-\sqrt{v}}
Dividing by -\sqrt{v} undoes the multiplication by -\sqrt{v}.
k=-\frac{a}{\sqrt{v}}
Divide a by -\sqrt{v}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}