Solve for a
a=-\left(\sqrt{3}+2\right)\approx -3.732050808
Assign a
a≔-\sqrt{3}-2
Share
Copied to clipboard
a=\frac{1+1}{2}-\sqrt{3}+1+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Since \frac{1}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
a=\frac{2}{2}-\sqrt{3}+1+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Add 1 and 1 to get 2.
a=1-\sqrt{3}+1+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Divide 2 by 2 to get 1.
a=2-\sqrt{3}+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Add 1 and 1 to get 2.
a=2-\sqrt{3}+1^{2}-\left(\sqrt{5}\right)^{2}
Consider \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a=2-\sqrt{3}+1-\left(\sqrt{5}\right)^{2}
Calculate 1 to the power of 2 and get 1.
a=2-\sqrt{3}+1-5
The square of \sqrt{5} is 5.
a=2-\sqrt{3}-4
Subtract 5 from 1 to get -4.
a=-2-\sqrt{3}
Subtract 4 from 2 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}