Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{bcx}{3x+4}\text{, }&x\neq -\frac{4}{3}\\a\in \mathrm{C}\text{, }&\left(b=0\text{ or }c=0\right)\text{ and }x=-\frac{4}{3}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{bcx}{3x+4}\text{, }&x\neq -\frac{4}{3}\\a\in \mathrm{R}\text{, }&\left(b=0\text{ or }c=0\right)\text{ and }x=-\frac{4}{3}\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{a\left(3x+4\right)}{cx}\text{, }&c\neq 0\text{ and }x\neq 0\\b\in \mathrm{C}\text{, }&\left(a=0\text{ and }x=0\right)\text{ or }\left(x=-\frac{4}{3}\text{ and }c=0\right)\text{ or }\left(a=0\text{ and }c=0\text{ and }x\neq 0\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{a\left(3x+4\right)}{cx}\text{, }&c\neq 0\text{ and }x\neq 0\\b\in \mathrm{R}\text{, }&\left(a=0\text{ and }x=0\right)\text{ or }\left(x=-\frac{4}{3}\text{ and }c=0\right)\text{ or }\left(a=0\text{ and }c=0\text{ and }x\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
a-\frac{bcx-3ax}{4}=0
Subtract \frac{bcx-3ax}{4} from both sides.
4a-\left(bcx-3ax\right)=0
Multiply both sides of the equation by 4.
4a-bcx+3ax=0
To find the opposite of bcx-3ax, find the opposite of each term.
4a+3ax=bcx
Add bcx to both sides. Anything plus zero gives itself.
\left(4+3x\right)a=bcx
Combine all terms containing a.
\left(3x+4\right)a=bcx
The equation is in standard form.
\frac{\left(3x+4\right)a}{3x+4}=\frac{bcx}{3x+4}
Divide both sides by 4+3x.
a=\frac{bcx}{3x+4}
Dividing by 4+3x undoes the multiplication by 4+3x.
a-\frac{bcx-3ax}{4}=0
Subtract \frac{bcx-3ax}{4} from both sides.
4a-\left(bcx-3ax\right)=0
Multiply both sides of the equation by 4.
4a-bcx+3ax=0
To find the opposite of bcx-3ax, find the opposite of each term.
4a+3ax=bcx
Add bcx to both sides. Anything plus zero gives itself.
\left(4+3x\right)a=bcx
Combine all terms containing a.
\left(3x+4\right)a=bcx
The equation is in standard form.
\frac{\left(3x+4\right)a}{3x+4}=\frac{bcx}{3x+4}
Divide both sides by 4+3x.
a=\frac{bcx}{3x+4}
Dividing by 4+3x undoes the multiplication by 4+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}