Solve for L
\left\{\begin{matrix}L=\frac{Ra}{R_{1}}\text{, }&R_{1}\neq 0\text{ and }R\neq 0\\L\in \mathrm{R}\text{, }&a=0\text{ and }R_{1}=0\text{ and }R\neq 0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=\frac{LR_{1}}{a}\text{, }&L\neq 0\text{ and }R_{1}\neq 0\text{ and }a\neq 0\\R\neq 0\text{, }&\left(L=0\text{ or }R_{1}=0\right)\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
aR=R_{1}L
Multiply both sides of the equation by R.
R_{1}L=aR
Swap sides so that all variable terms are on the left hand side.
R_{1}L=Ra
The equation is in standard form.
\frac{R_{1}L}{R_{1}}=\frac{Ra}{R_{1}}
Divide both sides by R_{1}.
L=\frac{Ra}{R_{1}}
Dividing by R_{1} undoes the multiplication by R_{1}.
aR=R_{1}L
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R.
aR=LR_{1}
The equation is in standard form.
\frac{aR}{a}=\frac{LR_{1}}{a}
Divide both sides by a.
R=\frac{LR_{1}}{a}
Dividing by a undoes the multiplication by a.
R=\frac{LR_{1}}{a}\text{, }R\neq 0
Variable R cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}