Solve for a, b
a=-\frac{98}{321}\approx -0.30529595
b = -\frac{439}{12} = -36\frac{7}{12} \approx -36.583333333
Share
Copied to clipboard
a=-\frac{98}{321}
Consider the first equation. Fraction \frac{98}{-321} can be rewritten as -\frac{98}{321} by extracting the negative sign.
b=-\left(-\left(-\frac{439}{12}\right)\right)
Consider the second equation. Fraction \frac{439}{-12} can be rewritten as -\frac{439}{12} by extracting the negative sign.
b=-\frac{439}{12}
The opposite of -\frac{439}{12} is \frac{439}{12}.
a=-\frac{98}{321} b=-\frac{439}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}