Solve for a
a = \frac{40 \sqrt{3} + 24}{11} \approx 8.480184755
Assign a
a≔\frac{40\sqrt{3}+24}{11}
Share
Copied to clipboard
a=\frac{2\times 8\sqrt{3}\sqrt{2}\sqrt{3}}{5\sqrt{6}-3\sqrt{2}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
a=\frac{2\times 8\times 3\sqrt{2}}{5\sqrt{6}-3\sqrt{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
a=\frac{16\times 3\sqrt{2}}{5\sqrt{6}-3\sqrt{2}}
Multiply 2 and 8 to get 16.
a=\frac{48\sqrt{2}}{5\sqrt{6}-3\sqrt{2}}
Multiply 16 and 3 to get 48.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{\left(5\sqrt{6}-3\sqrt{2}\right)\left(5\sqrt{6}+3\sqrt{2}\right)}
Rationalize the denominator of \frac{48\sqrt{2}}{5\sqrt{6}-3\sqrt{2}} by multiplying numerator and denominator by 5\sqrt{6}+3\sqrt{2}.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{\left(5\sqrt{6}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Consider \left(5\sqrt{6}-3\sqrt{2}\right)\left(5\sqrt{6}+3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{5^{2}\left(\sqrt{6}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Expand \left(5\sqrt{6}\right)^{2}.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{25\left(\sqrt{6}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{25\times 6-\left(-3\sqrt{2}\right)^{2}}
The square of \sqrt{6} is 6.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{150-\left(-3\sqrt{2}\right)^{2}}
Multiply 25 and 6 to get 150.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{150-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-3\sqrt{2}\right)^{2}.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{150-9\left(\sqrt{2}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{150-9\times 2}
The square of \sqrt{2} is 2.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{150-18}
Multiply 9 and 2 to get 18.
a=\frac{48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)}{132}
Subtract 18 from 150 to get 132.
a=\frac{4}{11}\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right)
Divide 48\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right) by 132 to get \frac{4}{11}\sqrt{2}\left(5\sqrt{6}+3\sqrt{2}\right).
a=\frac{4}{11}\sqrt{2}\times 5\sqrt{6}+\frac{4}{11}\sqrt{2}\times 3\sqrt{2}
Use the distributive property to multiply \frac{4}{11}\sqrt{2} by 5\sqrt{6}+3\sqrt{2}.
a=\frac{4}{11}\sqrt{2}\times 5\sqrt{6}+\frac{4}{11}\times 2\times 3
Multiply \sqrt{2} and \sqrt{2} to get 2.
a=\frac{4}{11}\sqrt{2}\times 5\sqrt{2}\sqrt{3}+\frac{4}{11}\times 2\times 3
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
a=\frac{4}{11}\times 2\times 5\sqrt{3}+\frac{4}{11}\times 2\times 3
Multiply \sqrt{2} and \sqrt{2} to get 2.
a=\frac{4\times 2}{11}\times 5\sqrt{3}+\frac{4}{11}\times 2\times 3
Express \frac{4}{11}\times 2 as a single fraction.
a=\frac{8}{11}\times 5\sqrt{3}+\frac{4}{11}\times 2\times 3
Multiply 4 and 2 to get 8.
a=\frac{8\times 5}{11}\sqrt{3}+\frac{4}{11}\times 2\times 3
Express \frac{8}{11}\times 5 as a single fraction.
a=\frac{40}{11}\sqrt{3}+\frac{4}{11}\times 2\times 3
Multiply 8 and 5 to get 40.
a=\frac{40}{11}\sqrt{3}+\frac{4\times 2}{11}\times 3
Express \frac{4}{11}\times 2 as a single fraction.
a=\frac{40}{11}\sqrt{3}+\frac{8}{11}\times 3
Multiply 4 and 2 to get 8.
a=\frac{40}{11}\sqrt{3}+\frac{8\times 3}{11}
Express \frac{8}{11}\times 3 as a single fraction.
a=\frac{40}{11}\sqrt{3}+\frac{24}{11}
Multiply 8 and 3 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}