Solve for a
a=\frac{2u+5}{11}
Solve for u
u=\frac{11a-5}{2}
Share
Copied to clipboard
a=\frac{2u+5}{4+7}
The opposite of -7 is 7.
a=\frac{2u+5}{11}
Add 4 and 7 to get 11.
a=\frac{2}{11}u+\frac{5}{11}
Divide each term of 2u+5 by 11 to get \frac{2}{11}u+\frac{5}{11}.
a=\frac{2u+5}{4+7}
The opposite of -7 is 7.
a=\frac{2u+5}{11}
Add 4 and 7 to get 11.
a=\frac{2}{11}u+\frac{5}{11}
Divide each term of 2u+5 by 11 to get \frac{2}{11}u+\frac{5}{11}.
\frac{2}{11}u+\frac{5}{11}=a
Swap sides so that all variable terms are on the left hand side.
\frac{2}{11}u=a-\frac{5}{11}
Subtract \frac{5}{11} from both sides.
\frac{\frac{2}{11}u}{\frac{2}{11}}=\frac{a-\frac{5}{11}}{\frac{2}{11}}
Divide both sides of the equation by \frac{2}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
u=\frac{a-\frac{5}{11}}{\frac{2}{11}}
Dividing by \frac{2}{11} undoes the multiplication by \frac{2}{11}.
u=\frac{11a-5}{2}
Divide a-\frac{5}{11} by \frac{2}{11} by multiplying a-\frac{5}{11} by the reciprocal of \frac{2}{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}