Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a=\frac{1}{a}+\frac{a}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
a=\frac{1+a}{a}
Since \frac{1}{a} and \frac{a}{a} have the same denominator, add them by adding their numerators.
a-\frac{1+a}{a}=0
Subtract \frac{1+a}{a} from both sides.
\frac{aa}{a}-\frac{1+a}{a}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{aa-\left(1+a\right)}{a}=0
Since \frac{aa}{a} and \frac{1+a}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-1-a}{a}=0
Do the multiplications in aa-\left(1+a\right).
a^{2}-1-a=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
a^{2}-a-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Multiply -4 times -1.
a=\frac{-\left(-1\right)±\sqrt{5}}{2}
Add 1 to 4.
a=\frac{1±\sqrt{5}}{2}
The opposite of -1 is 1.
a=\frac{\sqrt{5}+1}{2}
Now solve the equation a=\frac{1±\sqrt{5}}{2} when ± is plus. Add 1 to \sqrt{5}.
a=\frac{1-\sqrt{5}}{2}
Now solve the equation a=\frac{1±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 1.
a=\frac{\sqrt{5}+1}{2} a=\frac{1-\sqrt{5}}{2}
The equation is now solved.
a=\frac{1}{a}+\frac{a}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
a=\frac{1+a}{a}
Since \frac{1}{a} and \frac{a}{a} have the same denominator, add them by adding their numerators.
a-\frac{1+a}{a}=0
Subtract \frac{1+a}{a} from both sides.
\frac{aa}{a}-\frac{1+a}{a}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{aa-\left(1+a\right)}{a}=0
Since \frac{aa}{a} and \frac{1+a}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-1-a}{a}=0
Do the multiplications in aa-\left(1+a\right).
a^{2}-1-a=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
a^{2}-a=1
Add 1 to both sides. Anything plus zero gives itself.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-a+\frac{1}{4}=1+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-a+\frac{1}{4}=\frac{5}{4}
Add 1 to \frac{1}{4}.
\left(a-\frac{1}{2}\right)^{2}=\frac{5}{4}
Factor a^{2}-a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
a-\frac{1}{2}=\frac{\sqrt{5}}{2} a-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplify.
a=\frac{\sqrt{5}+1}{2} a=\frac{1-\sqrt{5}}{2}
Add \frac{1}{2} to both sides of the equation.