Solve for b
\left\{\begin{matrix}b=\frac{-ax^{2}+a^{2}-c}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{R}\text{, }&c=a^{2}\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{-\sqrt{x^{4}+4bx+4c}+x^{2}}{2}\text{, }&\left(c\neq 0\text{ and }b=0\text{ and }c\geq -\frac{x^{4}}{4}\right)\text{ or }\left(b\neq 0\text{ and }x\neq -\frac{c}{b}\text{ and }x^{4}+4bx+4c\geq 0\text{ and }c\geq -\frac{x^{4}}{4}-bx\right)\\a=\frac{\sqrt{x^{4}+4bx+4c}+x^{2}}{2}\text{, }&\left(c\neq 0\text{ or }x\neq 0\right)\text{ and }\left(4c\geq 0\text{ or }x\neq 0\right)\text{ and }x^{4}+4bx+4c\geq 0\text{ and }c\geq -\frac{x^{4}}{4}-bx\end{matrix}\right.
Graph
Share
Copied to clipboard
a\times 4a^{2}=4a^{2}\left(x+\frac{b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
Multiply both sides of the equation by 4a^{2}.
a^{3}\times 4=4a^{2}\left(x+\frac{b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
a^{3}\times 4=4a^{2}\left(\frac{x\times 2a}{2a}+\frac{b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2a}{2a}.
a^{3}\times 4=4a^{2}\times \left(\frac{x\times 2a+b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
Since \frac{x\times 2a}{2a} and \frac{b}{2a} have the same denominator, add them by adding their numerators.
a^{3}\times 4=4a^{2}\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}-\left(b^{2}-4ac\right)
To raise \frac{x\times 2a+b}{2a} to a power, raise both numerator and denominator to the power and then divide.
a^{3}\times 4=\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}-\left(b^{2}-4ac\right)
Express 4\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}} as a single fraction.
a^{3}\times 4=\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}-b^{2}+4ac
To find the opposite of b^{2}-4ac, find the opposite of each term.
a^{3}\times 4=\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{\left(2a\right)^{2}}a^{2}-b^{2}+4ac
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x\times 2a+b\right)^{2}.
a^{3}\times 4=\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{2^{2}a^{2}}a^{2}-b^{2}+4ac
Expand \left(2a\right)^{2}.
a^{3}\times 4=\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{4a^{2}}a^{2}-b^{2}+4ac
Calculate 2 to the power of 2 and get 4.
a^{3}\times 4=\frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2}-b^{2}+4ac
Cancel out 4 in both numerator and denominator.
a^{3}\times 4=\frac{\left(4a^{2}x^{2}+4abx+b^{2}\right)a^{2}}{a^{2}}-b^{2}+4ac
Express \frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2} as a single fraction.
a^{3}\times 4=4a^{2}x^{2}+4abx+b^{2}-b^{2}+4ac
Cancel out a^{2} in both numerator and denominator.
a^{3}\times 4=4a^{2}x^{2}+4abx+4ac
Combine b^{2} and -b^{2} to get 0.
4a^{2}x^{2}+4abx+4ac=a^{3}\times 4
Swap sides so that all variable terms are on the left hand side.
4abx+4ac=a^{3}\times 4-4a^{2}x^{2}
Subtract 4a^{2}x^{2} from both sides.
4abx=a^{3}\times 4-4a^{2}x^{2}-4ac
Subtract 4ac from both sides.
4axb=-4a^{2}x^{2}+4a^{3}-4ac
The equation is in standard form.
\frac{4axb}{4ax}=\frac{4a\left(-ax^{2}+a^{2}-c\right)}{4ax}
Divide both sides by 4ax.
b=\frac{4a\left(-ax^{2}+a^{2}-c\right)}{4ax}
Dividing by 4ax undoes the multiplication by 4ax.
b=\frac{-ax^{2}+a^{2}-c}{x}
Divide 4a\left(a^{2}-ax^{2}-c\right) by 4ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}