Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

a\times 4a^{2}=4a^{2}\left(x+\frac{b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
Multiply both sides of the equation by 4a^{2}.
a^{3}\times 4=4a^{2}\left(x+\frac{b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
a^{3}\times 4=4a^{2}\left(\frac{x\times 2a}{2a}+\frac{b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2a}{2a}.
a^{3}\times 4=4a^{2}\times \left(\frac{x\times 2a+b}{2a}\right)^{2}-\left(b^{2}-4ac\right)
Since \frac{x\times 2a}{2a} and \frac{b}{2a} have the same denominator, add them by adding their numerators.
a^{3}\times 4=4a^{2}\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}-\left(b^{2}-4ac\right)
To raise \frac{x\times 2a+b}{2a} to a power, raise both numerator and denominator to the power and then divide.
a^{3}\times 4=\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}-\left(b^{2}-4ac\right)
Express 4\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}} as a single fraction.
a^{3}\times 4=\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}-b^{2}+4ac
To find the opposite of b^{2}-4ac, find the opposite of each term.
a^{3}\times 4=\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{\left(2a\right)^{2}}a^{2}-b^{2}+4ac
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x\times 2a+b\right)^{2}.
a^{3}\times 4=\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{2^{2}a^{2}}a^{2}-b^{2}+4ac
Expand \left(2a\right)^{2}.
a^{3}\times 4=\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{4a^{2}}a^{2}-b^{2}+4ac
Calculate 2 to the power of 2 and get 4.
a^{3}\times 4=\frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2}-b^{2}+4ac
Cancel out 4 in both numerator and denominator.
a^{3}\times 4=\frac{\left(4a^{2}x^{2}+4abx+b^{2}\right)a^{2}}{a^{2}}-b^{2}+4ac
Express \frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2} as a single fraction.
a^{3}\times 4=4a^{2}x^{2}+4abx+b^{2}-b^{2}+4ac
Cancel out a^{2} in both numerator and denominator.
a^{3}\times 4=4a^{2}x^{2}+4abx+4ac
Combine b^{2} and -b^{2} to get 0.
4a^{2}x^{2}+4abx+4ac=a^{3}\times 4
Swap sides so that all variable terms are on the left hand side.
4abx+4ac=a^{3}\times 4-4a^{2}x^{2}
Subtract 4a^{2}x^{2} from both sides.
4abx=a^{3}\times 4-4a^{2}x^{2}-4ac
Subtract 4ac from both sides.
4axb=-4a^{2}x^{2}+4a^{3}-4ac
The equation is in standard form.
\frac{4axb}{4ax}=\frac{4a\left(-ax^{2}+a^{2}-c\right)}{4ax}
Divide both sides by 4ax.
b=\frac{4a\left(-ax^{2}+a^{2}-c\right)}{4ax}
Dividing by 4ax undoes the multiplication by 4ax.
b=\frac{-ax^{2}+a^{2}-c}{x}
Divide 4a\left(a^{2}-ax^{2}-c\right) by 4ax.