Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a+b\sqrt{3}=m^{2}+2mn\sqrt{3}+n^{2}\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+n\sqrt{3}\right)^{2}.
a+b\sqrt{3}=m^{2}+2mn\sqrt{3}+n^{2}\times 3
The square of \sqrt{3} is 3.
b\sqrt{3}=m^{2}+2mn\sqrt{3}+n^{2}\times 3-a
Subtract a from both sides.
\sqrt{3}b=2\sqrt{3}mn+3n^{2}+m^{2}-a
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{2\sqrt{3}mn+3n^{2}+m^{2}-a}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{2\sqrt{3}mn+3n^{2}+m^{2}-a}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(2\sqrt{3}mn+3n^{2}+m^{2}-a\right)}{3}
Divide m^{2}+2mn\sqrt{3}+3n^{2}-a by \sqrt{3}.