Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
a+b\sqrt{3}=\frac{3\sqrt{3}-\left(\sqrt{3}\right)^{2}}{6}
Use the distributive property to multiply \sqrt{3} by 3-\sqrt{3}.
a+b\sqrt{3}=\frac{3\sqrt{3}-3}{6}
The square of \sqrt{3} is 3.
a+b\sqrt{3}=\frac{1}{2}\sqrt{3}-\frac{1}{2}
Divide each term of 3\sqrt{3}-3 by 6 to get \frac{1}{2}\sqrt{3}-\frac{1}{2}.
b\sqrt{3}=\frac{1}{2}\sqrt{3}-\frac{1}{2}-a
Subtract a from both sides.
\sqrt{3}b=-a+\frac{\sqrt{3}}{2}-\frac{1}{2}
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+\frac{\sqrt{3}}{2}-\frac{1}{2}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+\frac{\sqrt{3}}{2}-\frac{1}{2}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-2a+\sqrt{3}-1\right)}{6}
Divide \frac{\sqrt{3}}{2}-\frac{1}{2}-a by \sqrt{3}.