Solve for b
b=\frac{\sqrt{3}\left(-2a+\sqrt{3}-1\right)}{6}
Solve for a
a=\frac{-2\sqrt{3}b+\sqrt{3}-1}{2}
Share
Copied to clipboard
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
a+b\sqrt{3}=\frac{\sqrt{3}\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
a+b\sqrt{3}=\frac{3\sqrt{3}-\left(\sqrt{3}\right)^{2}}{6}
Use the distributive property to multiply \sqrt{3} by 3-\sqrt{3}.
a+b\sqrt{3}=\frac{3\sqrt{3}-3}{6}
The square of \sqrt{3} is 3.
a+b\sqrt{3}=\frac{1}{2}\sqrt{3}-\frac{1}{2}
Divide each term of 3\sqrt{3}-3 by 6 to get \frac{1}{2}\sqrt{3}-\frac{1}{2}.
b\sqrt{3}=\frac{1}{2}\sqrt{3}-\frac{1}{2}-a
Subtract a from both sides.
\sqrt{3}b=-a+\frac{\sqrt{3}}{2}-\frac{1}{2}
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+\frac{\sqrt{3}}{2}-\frac{1}{2}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+\frac{\sqrt{3}}{2}-\frac{1}{2}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-2a+\sqrt{3}-1\right)}{6}
Divide \frac{\sqrt{3}}{2}-\frac{1}{2}-a by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}