Solve for a
a=\frac{3d}{4}
Solve for d
d=\frac{4a}{3}
Share
Copied to clipboard
a+3d-5a=0
Subtract 5a from both sides.
-4a+3d=0
Combine a and -5a to get -4a.
-4a=-3d
Subtract 3d from both sides. Anything subtracted from zero gives its negation.
\frac{-4a}{-4}=-\frac{3d}{-4}
Divide both sides by -4.
a=-\frac{3d}{-4}
Dividing by -4 undoes the multiplication by -4.
a=\frac{3d}{4}
Divide -3d by -4.
3d=5a-a
Subtract a from both sides.
3d=4a
Combine 5a and -a to get 4a.
\frac{3d}{3}=\frac{4a}{3}
Divide both sides by 3.
d=\frac{4a}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}