Solve for a
a=\frac{-1+\sqrt{131}i}{6}\approx -0.166666667+1.90758719i
a=\frac{-\sqrt{131}i-1}{6}\approx -0.166666667-1.90758719i
Share
Copied to clipboard
3a^{2}+a=-11
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3a^{2}+a-\left(-11\right)=-11-\left(-11\right)
Add 11 to both sides of the equation.
3a^{2}+a-\left(-11\right)=0
Subtracting -11 from itself leaves 0.
3a^{2}+a+11=0
Subtract -11 from 0.
a=\frac{-1±\sqrt{1^{2}-4\times 3\times 11}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 1 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\times 3\times 11}}{2\times 3}
Square 1.
a=\frac{-1±\sqrt{1-12\times 11}}{2\times 3}
Multiply -4 times 3.
a=\frac{-1±\sqrt{1-132}}{2\times 3}
Multiply -12 times 11.
a=\frac{-1±\sqrt{-131}}{2\times 3}
Add 1 to -132.
a=\frac{-1±\sqrt{131}i}{2\times 3}
Take the square root of -131.
a=\frac{-1±\sqrt{131}i}{6}
Multiply 2 times 3.
a=\frac{-1+\sqrt{131}i}{6}
Now solve the equation a=\frac{-1±\sqrt{131}i}{6} when ± is plus. Add -1 to i\sqrt{131}.
a=\frac{-\sqrt{131}i-1}{6}
Now solve the equation a=\frac{-1±\sqrt{131}i}{6} when ± is minus. Subtract i\sqrt{131} from -1.
a=\frac{-1+\sqrt{131}i}{6} a=\frac{-\sqrt{131}i-1}{6}
The equation is now solved.
3a^{2}+a=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3a^{2}+a}{3}=-\frac{11}{3}
Divide both sides by 3.
a^{2}+\frac{1}{3}a=-\frac{11}{3}
Dividing by 3 undoes the multiplication by 3.
a^{2}+\frac{1}{3}a+\left(\frac{1}{6}\right)^{2}=-\frac{11}{3}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{1}{3}a+\frac{1}{36}=-\frac{11}{3}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{1}{3}a+\frac{1}{36}=-\frac{131}{36}
Add -\frac{11}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{1}{6}\right)^{2}=-\frac{131}{36}
Factor a^{2}+\frac{1}{3}a+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{131}{36}}
Take the square root of both sides of the equation.
a+\frac{1}{6}=\frac{\sqrt{131}i}{6} a+\frac{1}{6}=-\frac{\sqrt{131}i}{6}
Simplify.
a=\frac{-1+\sqrt{131}i}{6} a=\frac{-\sqrt{131}i-1}{6}
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}