Evaluate
\frac{a^{3}+2a^{2}+2}{a\left(a+2\right)}
Differentiate w.r.t. a
\frac{a^{4}+4a^{3}+4a^{2}-4a-4}{\left(a\left(a+2\right)\right)^{2}}
Share
Copied to clipboard
a+\frac{2}{a^{2}+2a}
Express 2\times \frac{1}{a^{2}+2a} as a single fraction.
a+\frac{2}{a\left(a+2\right)}
Factor a^{2}+2a.
\frac{aa\left(a+2\right)}{a\left(a+2\right)}+\frac{2}{a\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a\left(a+2\right)}{a\left(a+2\right)}.
\frac{aa\left(a+2\right)+2}{a\left(a+2\right)}
Since \frac{aa\left(a+2\right)}{a\left(a+2\right)} and \frac{2}{a\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}+2a^{2}+2}{a\left(a+2\right)}
Do the multiplications in aa\left(a+2\right)+2.
\frac{a^{3}+2a^{2}+2}{a^{2}+2a}
Expand a\left(a+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}