Solve for X, Y
X=0
Y=2
Share
Copied to clipboard
X=-\frac{2}{3}+\frac{2}{3}
Consider the first equation. The opposite of -\frac{2}{3} is \frac{2}{3}.
X=0
Add -\frac{2}{3} and \frac{2}{3} to get 0.
Y=\frac{7}{5}-\frac{4}{3}-\left(\frac{2}{5}-\frac{4}{3}-1\right)
Consider the second equation. Add 1 and \frac{2}{5} to get \frac{7}{5}.
Y=\frac{1}{15}-\left(\frac{2}{5}-\frac{4}{3}-1\right)
Subtract \frac{4}{3} from \frac{7}{5} to get \frac{1}{15}.
Y=\frac{1}{15}-\left(-\frac{14}{15}-1\right)
Subtract \frac{4}{3} from \frac{2}{5} to get -\frac{14}{15}.
Y=\frac{1}{15}-\left(-\frac{29}{15}\right)
Subtract 1 from -\frac{14}{15} to get -\frac{29}{15}.
Y=\frac{1}{15}+\frac{29}{15}
The opposite of -\frac{29}{15} is \frac{29}{15}.
Y=2
Add \frac{1}{15} and \frac{29}{15} to get 2.
X=0 Y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}