Solve for Y
Y=\frac{9X}{2}+Z
Solve for X
X=\frac{2\left(Y-Z\right)}{9}
Share
Copied to clipboard
X=\frac{2}{9}Y-\frac{2}{9}Z
Use the distributive property to multiply \frac{2}{9} by Y-Z.
\frac{2}{9}Y-\frac{2}{9}Z=X
Swap sides so that all variable terms are on the left hand side.
\frac{2}{9}Y=X+\frac{2}{9}Z
Add \frac{2}{9}Z to both sides.
\frac{2}{9}Y=\frac{2Z}{9}+X
The equation is in standard form.
\frac{\frac{2}{9}Y}{\frac{2}{9}}=\frac{\frac{2Z}{9}+X}{\frac{2}{9}}
Divide both sides of the equation by \frac{2}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
Y=\frac{\frac{2Z}{9}+X}{\frac{2}{9}}
Dividing by \frac{2}{9} undoes the multiplication by \frac{2}{9}.
Y=\frac{9X}{2}+Z
Divide X+\frac{2Z}{9} by \frac{2}{9} by multiplying X+\frac{2Z}{9} by the reciprocal of \frac{2}{9}.
X=\frac{2}{9}Y-\frac{2}{9}Z
Use the distributive property to multiply \frac{2}{9} by Y-Z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}