Solve for X (complex solution)
\left\{\begin{matrix}X=\frac{Z}{Y+1}\text{, }&Y\neq -1\\X\in \mathrm{C}\text{, }&Z=0\text{ and }Y=-1\end{matrix}\right.
Solve for Y (complex solution)
\left\{\begin{matrix}Y=\frac{Z}{X}-1\text{, }&X\neq 0\\Y\in \mathrm{C}\text{, }&X=0\text{ and }Z=0\end{matrix}\right.
Solve for X
\left\{\begin{matrix}X=\frac{Z}{Y+1}\text{, }&Y\neq -1\\X\in \mathrm{R}\text{, }&Z=0\text{ and }Y=-1\end{matrix}\right.
Solve for Y
\left\{\begin{matrix}Y=\frac{Z}{X}-1\text{, }&X\neq 0\\Y\in \mathrm{R}\text{, }&X=0\text{ and }Z=0\end{matrix}\right.
Share
Copied to clipboard
\left(1+Y\right)X=Z
Combine all terms containing X.
\left(Y+1\right)X=Z
The equation is in standard form.
\frac{\left(Y+1\right)X}{Y+1}=\frac{Z}{Y+1}
Divide both sides by 1+Y.
X=\frac{Z}{Y+1}
Dividing by 1+Y undoes the multiplication by 1+Y.
XY=Z-X
Subtract X from both sides.
\frac{XY}{X}=\frac{Z-X}{X}
Divide both sides by X.
Y=\frac{Z-X}{X}
Dividing by X undoes the multiplication by X.
Y=\frac{Z}{X}-1
Divide Z-X by X.
\left(1+Y\right)X=Z
Combine all terms containing X.
\left(Y+1\right)X=Z
The equation is in standard form.
\frac{\left(Y+1\right)X}{Y+1}=\frac{Z}{Y+1}
Divide both sides by 1+Y.
X=\frac{Z}{Y+1}
Dividing by 1+Y undoes the multiplication by 1+Y.
XY=Z-X
Subtract X from both sides.
\frac{XY}{X}=\frac{Z-X}{X}
Divide both sides by X.
Y=\frac{Z-X}{X}
Dividing by X undoes the multiplication by X.
Y=\frac{Z}{X}-1
Divide Z-X by X.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}