Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{1200-W-15x}{x-40}\text{, }&x\neq 40\\m\in \mathrm{C}\text{, }&W=600\text{ and }x=40\end{matrix}\right.
Solve for W
W=mx-15x-40m+1200
Solve for m
\left\{\begin{matrix}m=-\frac{1200-W-15x}{x-40}\text{, }&x\neq 40\\m\in \mathrm{R}\text{, }&W=600\text{ and }x=40\end{matrix}\right.
Graph
Share
Copied to clipboard
W=15x+1200-30x-40m+xm
Use the distributive property to multiply 30-m by 40-x.
W=-15x+1200-40m+xm
Combine 15x and -30x to get -15x.
-15x+1200-40m+xm=W
Swap sides so that all variable terms are on the left hand side.
1200-40m+xm=W+15x
Add 15x to both sides.
-40m+xm=W+15x-1200
Subtract 1200 from both sides.
\left(-40+x\right)m=W+15x-1200
Combine all terms containing m.
\left(x-40\right)m=15x+W-1200
The equation is in standard form.
\frac{\left(x-40\right)m}{x-40}=\frac{15x+W-1200}{x-40}
Divide both sides by x-40.
m=\frac{15x+W-1200}{x-40}
Dividing by x-40 undoes the multiplication by x-40.
W=15x+1200-30x-40m+mx
Use the distributive property to multiply 30-m by 40-x.
W=-15x+1200-40m+mx
Combine 15x and -30x to get -15x.
W=15x+1200-30x-40m+xm
Use the distributive property to multiply 30-m by 40-x.
W=-15x+1200-40m+xm
Combine 15x and -30x to get -15x.
-15x+1200-40m+xm=W
Swap sides so that all variable terms are on the left hand side.
1200-40m+xm=W+15x
Add 15x to both sides.
-40m+xm=W+15x-1200
Subtract 1200 from both sides.
\left(-40+x\right)m=W+15x-1200
Combine all terms containing m.
\left(x-40\right)m=15x+W-1200
The equation is in standard form.
\frac{\left(x-40\right)m}{x-40}=\frac{15x+W-1200}{x-40}
Divide both sides by x-40.
m=\frac{15x+W-1200}{x-40}
Dividing by x-40 undoes the multiplication by x-40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}