Solve for W
W=\frac{4m}{5}-\frac{6n}{5}+150
Solve for m
m=\frac{3n}{2}+\frac{5W}{4}-187.5
Share
Copied to clipboard
W=0.8m+\left(\frac{100}{0.8}+\frac{-0.8n}{0.8}\right)\times 1.2
Divide each term of 100-0.8n by 0.8 to get \frac{100}{0.8}+\frac{-0.8n}{0.8}.
W=0.8m+\left(\frac{1000}{8}+\frac{-0.8n}{0.8}\right)\times 1.2
Expand \frac{100}{0.8} by multiplying both numerator and the denominator by 10.
W=0.8m+\left(125+\frac{-0.8n}{0.8}\right)\times 1.2
Divide 1000 by 8 to get 125.
W=0.8m+\left(125-n\right)\times 1.2
Cancel out 0.8 and 0.8.
W=0.8m+150-1.2n
Use the distributive property to multiply 125-n by 1.2.
W=0.8m+\left(\frac{100}{0.8}+\frac{-0.8n}{0.8}\right)\times 1.2
Divide each term of 100-0.8n by 0.8 to get \frac{100}{0.8}+\frac{-0.8n}{0.8}.
W=0.8m+\left(\frac{1000}{8}+\frac{-0.8n}{0.8}\right)\times 1.2
Expand \frac{100}{0.8} by multiplying both numerator and the denominator by 10.
W=0.8m+\left(125+\frac{-0.8n}{0.8}\right)\times 1.2
Divide 1000 by 8 to get 125.
W=0.8m+\left(125-n\right)\times 1.2
Cancel out 0.8 and 0.8.
W=0.8m+150-1.2n
Use the distributive property to multiply 125-n by 1.2.
0.8m+150-1.2n=W
Swap sides so that all variable terms are on the left hand side.
0.8m-1.2n=W-150
Subtract 150 from both sides.
0.8m=W-150+1.2n
Add 1.2n to both sides.
0.8m=\frac{6n}{5}+W-150
The equation is in standard form.
\frac{0.8m}{0.8}=\frac{\frac{6n}{5}+W-150}{0.8}
Divide both sides of the equation by 0.8, which is the same as multiplying both sides by the reciprocal of the fraction.
m=\frac{\frac{6n}{5}+W-150}{0.8}
Dividing by 0.8 undoes the multiplication by 0.8.
m=\frac{3n}{2}+\frac{5W}{4}-\frac{375}{2}
Divide -150+W+\frac{6n}{5} by 0.8 by multiplying -150+W+\frac{6n}{5} by the reciprocal of 0.8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}