Solve for W (complex solution)
W=16\left(x+400\right)
Solve for W
W=16x+6400
Solve for x
x=\frac{W-6400}{16}
Graph
Share
Copied to clipboard
W=0.8\left(100x+8000-80x\right)
Use the distributive property to multiply 80 by 100-x.
W=0.8\left(20x+8000\right)
Combine 100x and -80x to get 20x.
W=16x+6400
Use the distributive property to multiply 0.8 by 20x+8000.
W=0.8\left(100x+8000-80x\right)
Use the distributive property to multiply 80 by 100-x.
W=0.8\left(20x+8000\right)
Combine 100x and -80x to get 20x.
W=16x+6400
Use the distributive property to multiply 0.8 by 20x+8000.
W=0.8\left(100x+8000-80x\right)
Use the distributive property to multiply 80 by 100-x.
W=0.8\left(20x+8000\right)
Combine 100x and -80x to get 20x.
W=16x+6400
Use the distributive property to multiply 0.8 by 20x+8000.
16x+6400=W
Swap sides so that all variable terms are on the left hand side.
16x=W-6400
Subtract 6400 from both sides.
\frac{16x}{16}=\frac{W-6400}{16}
Divide both sides by 16.
x=\frac{W-6400}{16}
Dividing by 16 undoes the multiplication by 16.
x=\frac{W}{16}-400
Divide W-6400 by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}