Solve for a
\left\{\begin{matrix}a=-\frac{96-2W+28t-t^{2}}{4\left(t-48\right)}\text{, }&t\neq 48\\a\in \mathrm{R}\text{, }&W=-432\text{ and }t=48\end{matrix}\right.
Solve for W
W=2at-\frac{t^{2}}{2}+14t-96a+48
Share
Copied to clipboard
W=-\frac{1}{2}t^{2}+14t+2at-96a+48
Use the distributive property to multiply 14+2a by t.
-\frac{1}{2}t^{2}+14t+2at-96a+48=W
Swap sides so that all variable terms are on the left hand side.
14t+2at-96a+48=W+\frac{1}{2}t^{2}
Add \frac{1}{2}t^{2} to both sides.
2at-96a+48=W+\frac{1}{2}t^{2}-14t
Subtract 14t from both sides.
2at-96a=W+\frac{1}{2}t^{2}-14t-48
Subtract 48 from both sides.
\left(2t-96\right)a=W+\frac{1}{2}t^{2}-14t-48
Combine all terms containing a.
\left(2t-96\right)a=\frac{t^{2}}{2}+W-14t-48
The equation is in standard form.
\frac{\left(2t-96\right)a}{2t-96}=\frac{\frac{t^{2}}{2}+W-14t-48}{2t-96}
Divide both sides by 2t-96.
a=\frac{\frac{t^{2}}{2}+W-14t-48}{2t-96}
Dividing by 2t-96 undoes the multiplication by 2t-96.
a=\frac{t^{2}-28t+2W-96}{4\left(t-48\right)}
Divide W+\frac{t^{2}}{2}-14t-48 by 2t-96.
W=-\frac{1}{2}t^{2}+14t+2at-96a+48
Use the distributive property to multiply 14+2a by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}