Solve for m
m=-\frac{V_{m}-2}{2V_{m}+5}
V_{m}\neq -\frac{5}{2}
Solve for V_m
V_{m}=-\frac{5m-2}{2m+1}
m\neq -\frac{1}{2}
Share
Copied to clipboard
V_{m}\left(2m+1\right)=2-5m
Variable m cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2m+1.
2V_{m}m+V_{m}=2-5m
Use the distributive property to multiply V_{m} by 2m+1.
2V_{m}m+V_{m}+5m=2
Add 5m to both sides.
2V_{m}m+5m=2-V_{m}
Subtract V_{m} from both sides.
\left(2V_{m}+5\right)m=2-V_{m}
Combine all terms containing m.
\frac{\left(2V_{m}+5\right)m}{2V_{m}+5}=\frac{2-V_{m}}{2V_{m}+5}
Divide both sides by 2V_{m}+5.
m=\frac{2-V_{m}}{2V_{m}+5}
Dividing by 2V_{m}+5 undoes the multiplication by 2V_{m}+5.
m=\frac{2-V_{m}}{2V_{m}+5}\text{, }m\neq -\frac{1}{2}
Variable m cannot be equal to -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}