V E = M ( 1 - d t )
Solve for E (complex solution)
\left\{\begin{matrix}E=-\frac{M\left(dt-1\right)}{V}\text{, }&V\neq 0\\E\in \mathrm{C}\text{, }&\left(M=0\text{ and }V=0\right)\text{ or }\left(d=\frac{1}{t}\text{ and }t\neq 0\text{ and }V=0\right)\end{matrix}\right.
Solve for M (complex solution)
\left\{\begin{matrix}M=-\frac{EV}{dt-1}\text{, }&t=0\text{ or }d\neq \frac{1}{t}\\M\in \mathrm{C}\text{, }&\left(E=0\text{ or }V=0\right)\text{ and }d=\frac{1}{t}\text{ and }t\neq 0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=-\frac{M\left(dt-1\right)}{V}\text{, }&V\neq 0\\E\in \mathrm{R}\text{, }&\left(M=0\text{ and }V=0\right)\text{ or }\left(d=\frac{1}{t}\text{ and }t\neq 0\text{ and }V=0\right)\end{matrix}\right.
Solve for M
\left\{\begin{matrix}M=-\frac{EV}{dt-1}\text{, }&t=0\text{ or }d\neq \frac{1}{t}\\M\in \mathrm{R}\text{, }&\left(E=0\text{ or }V=0\right)\text{ and }d=\frac{1}{t}\text{ and }t\neq 0\end{matrix}\right.
Share
Copied to clipboard
VE=M-Mdt
Use the distributive property to multiply M by 1-dt.
\frac{VE}{V}=\frac{M-Mdt}{V}
Divide both sides by V.
E=\frac{M-Mdt}{V}
Dividing by V undoes the multiplication by V.
E=\frac{M\left(1-dt\right)}{V}
Divide M-Mdt by V.
VE=M-Mdt
Use the distributive property to multiply M by 1-dt.
M-Mdt=VE
Swap sides so that all variable terms are on the left hand side.
\left(1-dt\right)M=VE
Combine all terms containing M.
\left(1-dt\right)M=EV
The equation is in standard form.
\frac{\left(1-dt\right)M}{1-dt}=\frac{EV}{1-dt}
Divide both sides by 1-dt.
M=\frac{EV}{1-dt}
Dividing by 1-dt undoes the multiplication by 1-dt.
VE=M-Mdt
Use the distributive property to multiply M by 1-dt.
\frac{VE}{V}=\frac{M-Mdt}{V}
Divide both sides by V.
E=\frac{M-Mdt}{V}
Dividing by V undoes the multiplication by V.
E=\frac{M\left(1-dt\right)}{V}
Divide M-Mdt by V.
VE=M-Mdt
Use the distributive property to multiply M by 1-dt.
M-Mdt=VE
Swap sides so that all variable terms are on the left hand side.
\left(1-dt\right)M=VE
Combine all terms containing M.
\left(1-dt\right)M=EV
The equation is in standard form.
\frac{\left(1-dt\right)M}{1-dt}=\frac{EV}{1-dt}
Divide both sides by 1-dt.
M=\frac{EV}{1-dt}
Dividing by 1-dt undoes the multiplication by 1-dt.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}