V A = P ( 1 + ( n )
Solve for A
\left\{\begin{matrix}A=\frac{P\left(n+1\right)}{V}\text{, }&V\neq 0\\A\in \mathrm{R}\text{, }&\left(P=0\text{ or }n=-1\right)\text{ and }V=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=\frac{AV}{n+1}\text{, }&n\neq -1\\P\in \mathrm{R}\text{, }&\left(V=0\text{ or }A=0\right)\text{ and }n=-1\end{matrix}\right.
Share
Copied to clipboard
VA=P+Pn
Use the distributive property to multiply P by 1+n.
VA=Pn+P
The equation is in standard form.
\frac{VA}{V}=\frac{Pn+P}{V}
Divide both sides by V.
A=\frac{Pn+P}{V}
Dividing by V undoes the multiplication by V.
A=\frac{P\left(n+1\right)}{V}
Divide P+Pn by V.
VA=P+Pn
Use the distributive property to multiply P by 1+n.
P+Pn=VA
Swap sides so that all variable terms are on the left hand side.
\left(1+n\right)P=VA
Combine all terms containing P.
\left(n+1\right)P=AV
The equation is in standard form.
\frac{\left(n+1\right)P}{n+1}=\frac{AV}{n+1}
Divide both sides by 1+n.
P=\frac{AV}{n+1}
Dividing by 1+n undoes the multiplication by 1+n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}