Solve for V (complex solution)
\left\{\begin{matrix}\\V=0\text{, }&\text{unconditionally}\\V\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2\pi n_{1}i}{\ln(5)}+6\end{matrix}\right.
Solve for V
\left\{\begin{matrix}\\V=0\text{, }&\text{unconditionally}\\V\in \mathrm{R}\text{, }&x=6\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=6\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&V=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{2\pi n_{1}i}{\ln(5)}+6\text{, }n_{1}\in \mathrm{Z}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&V=0\end{matrix}\right.
Graph
Share
Copied to clipboard
V\times 15625=V\times 5^{x}
Calculate 5 to the power of 6 and get 15625.
V\times 15625-V\times 5^{x}=0
Subtract V\times 5^{x} from both sides.
-V\times 5^{x}+15625V=0
Reorder the terms.
\left(-5^{x}+15625\right)V=0
Combine all terms containing V.
\left(15625-5^{x}\right)V=0
The equation is in standard form.
V=0
Divide 0 by 15625-5^{x}.
V\times 15625=V\times 5^{x}
Calculate 5 to the power of 6 and get 15625.
V\times 15625-V\times 5^{x}=0
Subtract V\times 5^{x} from both sides.
-V\times 5^{x}+15625V=0
Reorder the terms.
\left(-5^{x}+15625\right)V=0
Combine all terms containing V.
\left(15625-5^{x}\right)V=0
The equation is in standard form.
V=0
Divide 0 by 15625-5^{x}.
V\times 15625=V\times 5^{x}
Calculate 5 to the power of 6 and get 15625.
V\times 5^{x}=V\times 15625
Swap sides so that all variable terms are on the left hand side.
V\times 5^{x}=15625V
Use the rules of exponents and logarithms to solve the equation.
5^{x}=15625
Divide both sides by V.
\log(5^{x})=\log(15625)
Take the logarithm of both sides of the equation.
x\log(5)=\log(15625)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(15625)}{\log(5)}
Divide both sides by \log(5).
x=\log_{5}\left(15625\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}