Solve for C
C=-Ea+Ec-V
Solve for E
\left\{\begin{matrix}E=\frac{C+V}{c-a}\text{, }&c\neq a\\E\in \mathrm{R}\text{, }&V=-C\text{ and }c=a\end{matrix}\right.
Share
Copied to clipboard
Ec-Ea-C=V
Swap sides so that all variable terms are on the left hand side.
-Ea-C=V-Ec
Subtract Ec from both sides.
-C=V-Ec+Ea
Add Ea to both sides.
-C=Ea-Ec+V
The equation is in standard form.
\frac{-C}{-1}=\frac{Ea-Ec+V}{-1}
Divide both sides by -1.
C=\frac{Ea-Ec+V}{-1}
Dividing by -1 undoes the multiplication by -1.
C=-\left(Ea-Ec+V\right)
Divide V-Ec+Ea by -1.
Ec-Ea-C=V
Swap sides so that all variable terms are on the left hand side.
Ec-Ea=V+C
Add C to both sides.
\left(c-a\right)E=V+C
Combine all terms containing E.
\left(c-a\right)E=C+V
The equation is in standard form.
\frac{\left(c-a\right)E}{c-a}=\frac{C+V}{c-a}
Divide both sides by c-a.
E=\frac{C+V}{c-a}
Dividing by c-a undoes the multiplication by c-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}