V = - 1000 + \frac { 372.5 } { ( 1 + 10 \% ) } + \frac { 372.5 } { ( 1 + 10 \% ) ^ { 2 } } + \frac { 372.5 } { ( 1.110 \% ) ^ { 3 } } + \frac { 372.5 } { ( 11 + 10 \% ) ^ { 4 } } + \frac { 612.5 } { ( 1 + 10 \% ) ^ { 5 } }
Solve for V
V = \frac{6659056878371212275475}{24448675760091} = 272368816\frac{8827326639472}{24448675760091} \approx 272368816.361055406
Assign V
V≔\frac{6659056878371212275475}{24448675760091}
Share
Copied to clipboard
V=-1000+\frac{372.5}{1+\frac{1}{10}}+\frac{372.5}{\left(1+\frac{10}{100}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
V=-1000+\frac{372.5}{\frac{11}{10}}+\frac{372.5}{\left(1+\frac{10}{100}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add 1 and \frac{1}{10} to get \frac{11}{10}.
V=-1000+372.5\times \frac{10}{11}+\frac{372.5}{\left(1+\frac{10}{100}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Divide 372.5 by \frac{11}{10} by multiplying 372.5 by the reciprocal of \frac{11}{10}.
V=-1000+\frac{3725}{11}+\frac{372.5}{\left(1+\frac{10}{100}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Multiply 372.5 and \frac{10}{11} to get \frac{3725}{11}.
V=-\frac{7275}{11}+\frac{372.5}{\left(1+\frac{10}{100}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add -1000 and \frac{3725}{11} to get -\frac{7275}{11}.
V=-\frac{7275}{11}+\frac{372.5}{\left(1+\frac{1}{10}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
V=-\frac{7275}{11}+\frac{372.5}{\left(\frac{11}{10}\right)^{2}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add 1 and \frac{1}{10} to get \frac{11}{10}.
V=-\frac{7275}{11}+\frac{372.5}{\frac{121}{100}}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Calculate \frac{11}{10} to the power of 2 and get \frac{121}{100}.
V=-\frac{7275}{11}+372.5\times \frac{100}{121}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Divide 372.5 by \frac{121}{100} by multiplying 372.5 by the reciprocal of \frac{121}{100}.
V=-\frac{7275}{11}+\frac{37250}{121}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Multiply 372.5 and \frac{100}{121} to get \frac{37250}{121}.
V=-\frac{42775}{121}+\frac{372.5}{\left(\frac{1.11}{100}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add -\frac{7275}{11} and \frac{37250}{121} to get -\frac{42775}{121}.
V=-\frac{42775}{121}+\frac{372.5}{\left(\frac{111}{10000}\right)^{3}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Expand \frac{1.11}{100} by multiplying both numerator and the denominator by 100.
V=-\frac{42775}{121}+\frac{372.5}{\frac{1367631}{1000000000000}}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Calculate \frac{111}{10000} to the power of 3 and get \frac{1367631}{1000000000000}.
V=-\frac{42775}{121}+372.5\times \frac{1000000000000}{1367631}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Divide 372.5 by \frac{1367631}{1000000000000} by multiplying 372.5 by the reciprocal of \frac{1367631}{1000000000000}.
V=-\frac{42775}{121}+\frac{372500000000000}{1367631}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Multiply 372.5 and \frac{1000000000000}{1367631} to get \frac{372500000000000}{1367631}.
V=\frac{45072441499583975}{165483351}+\frac{372.5}{\left(11+\frac{10}{100}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add -\frac{42775}{121} and \frac{372500000000000}{1367631} to get \frac{45072441499583975}{165483351}.
V=\frac{45072441499583975}{165483351}+\frac{372.5}{\left(11+\frac{1}{10}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
V=\frac{45072441499583975}{165483351}+\frac{372.5}{\left(\frac{111}{10}\right)^{4}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add 11 and \frac{1}{10} to get \frac{111}{10}.
V=\frac{45072441499583975}{165483351}+\frac{372.5}{\frac{151807041}{10000}}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Calculate \frac{111}{10} to the power of 4 and get \frac{151807041}{10000}.
V=\frac{45072441499583975}{165483351}+372.5\times \frac{10000}{151807041}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Divide 372.5 by \frac{151807041}{10000} by multiplying 372.5 by the reciprocal of \frac{151807041}{10000}.
V=\frac{45072441499583975}{165483351}+\frac{3725000}{151807041}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Multiply 372.5 and \frac{10000}{151807041} to get \frac{3725000}{151807041}.
V=\frac{5003041006904546225}{18368651961}+\frac{612.5}{\left(1+\frac{10}{100}\right)^{5}}
Add \frac{45072441499583975}{165483351} and \frac{3725000}{151807041} to get \frac{5003041006904546225}{18368651961}.
V=\frac{5003041006904546225}{18368651961}+\frac{612.5}{\left(1+\frac{1}{10}\right)^{5}}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
V=\frac{5003041006904546225}{18368651961}+\frac{612.5}{\left(\frac{11}{10}\right)^{5}}
Add 1 and \frac{1}{10} to get \frac{11}{10}.
V=\frac{5003041006904546225}{18368651961}+\frac{612.5}{\frac{161051}{100000}}
Calculate \frac{11}{10} to the power of 5 and get \frac{161051}{100000}.
V=\frac{5003041006904546225}{18368651961}+612.5\times \frac{100000}{161051}
Divide 612.5 by \frac{161051}{100000} by multiplying 612.5 by the reciprocal of \frac{161051}{100000}.
V=\frac{5003041006904546225}{18368651961}+\frac{61250000}{161051}
Multiply 612.5 and \frac{100000}{161051} to get \frac{61250000}{161051}.
V=\frac{6659056878371212275475}{24448675760091}
Add \frac{5003041006904546225}{18368651961} and \frac{61250000}{161051} to get \frac{6659056878371212275475}{24448675760091}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}