Solve for V
V=-1
Assign V
V≔-1
Share
Copied to clipboard
V=\left(\frac{\left(1+i\right)\sqrt{2}}{\sqrt{2}-i\sqrt{2}}\right)^{2014}
Combine \sqrt{2} and i\sqrt{2} to get \left(1+i\right)\sqrt{2}.
V=\left(\frac{\left(1+i\right)\sqrt{2}}{\left(1-i\right)\sqrt{2}}\right)^{2014}
Combine \sqrt{2} and -i\sqrt{2} to get \left(1-i\right)\sqrt{2}.
V=\left(\frac{1+i}{1-i}\right)^{2014}
Cancel out \sqrt{2} in both numerator and denominator.
V=\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2014}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
V=\left(\frac{2i}{2}\right)^{2014}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
V=i^{2014}
Divide 2i by 2 to get i.
V=-1
Calculate i to the power of 2014 and get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}