Skip to main content
Solve for V
Tick mark Image
Assign V
Tick mark Image

Similar Problems from Web Search

Share

V=\left(\frac{\left(1+i\right)\sqrt{2}}{\sqrt{2}-i\sqrt{2}}\right)^{2014}
Combine \sqrt{2} and i\sqrt{2} to get \left(1+i\right)\sqrt{2}.
V=\left(\frac{\left(1+i\right)\sqrt{2}}{\left(1-i\right)\sqrt{2}}\right)^{2014}
Combine \sqrt{2} and -i\sqrt{2} to get \left(1-i\right)\sqrt{2}.
V=\left(\frac{1+i}{1-i}\right)^{2014}
Cancel out \sqrt{2} in both numerator and denominator.
V=\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2014}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
V=\left(\frac{2i}{2}\right)^{2014}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
V=i^{2014}
Divide 2i by 2 to get i.
V=-1
Calculate i to the power of 2014 and get -1.