Solve for T
T=\frac{R\left(4V-5\right)}{5}
R\neq 0
Solve for R
\left\{\begin{matrix}\\R\neq 0\text{, }&\text{unconditionally}\\R=-\frac{5T}{5-4V}\text{, }&T\neq 0\text{ and }V\neq \frac{5}{4}\end{matrix}\right.
Share
Copied to clipboard
VR=1.25\left(1+\frac{T}{R}\right)R
Multiply both sides of the equation by R.
VR=1.25\left(\frac{R}{R}+\frac{T}{R}\right)R
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{R}{R}.
VR=1.25\times \frac{R+T}{R}R
Since \frac{R}{R} and \frac{T}{R} have the same denominator, add them by adding their numerators.
VR=1.25\times \frac{\left(R+T\right)R}{R}
Express \frac{R+T}{R}R as a single fraction.
VR=1.25\left(R+T\right)
Cancel out R in both numerator and denominator.
VR=1.25R+1.25T
Use the distributive property to multiply 1.25 by R+T.
1.25R+1.25T=VR
Swap sides so that all variable terms are on the left hand side.
1.25T=VR-1.25R
Subtract 1.25R from both sides.
\frac{5}{4}T=RV-\frac{5R}{4}
The equation is in standard form.
\frac{\frac{5}{4}T}{\frac{5}{4}}=\frac{R\left(V-1.25\right)}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
T=\frac{R\left(V-1.25\right)}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
T=\frac{4R\left(V-1.25\right)}{5}
Divide R\left(-1.25+V\right) by \frac{5}{4} by multiplying R\left(-1.25+V\right) by the reciprocal of \frac{5}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}