Solve for T
T=2+\frac{1}{n}
n\neq 0
Solve for n
n=\frac{1}{T-2}
T\neq 2
Share
Copied to clipboard
nT=2n+1
The equation is in standard form.
\frac{nT}{n}=\frac{2n+1}{n}
Divide both sides by n.
T=\frac{2n+1}{n}
Dividing by n undoes the multiplication by n.
T=2+\frac{1}{n}
Divide 2n+1 by n.
Tn-2n=1
Subtract 2n from both sides.
\left(T-2\right)n=1
Combine all terms containing n.
\frac{\left(T-2\right)n}{T-2}=\frac{1}{T-2}
Divide both sides by T-2.
n=\frac{1}{T-2}
Dividing by T-2 undoes the multiplication by T-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}