Solve for I
I=\frac{5}{11T}
T\neq 0
Solve for T
T=\frac{5}{11I}
I\neq 0
Share
Copied to clipboard
TI=\frac{35}{\left(4+7\right)\left(4+3\right)}
Multiply 5 and 7 to get 35.
TI=\frac{35}{11\left(4+3\right)}
Add 4 and 7 to get 11.
TI=\frac{35}{11\times 7}
Add 4 and 3 to get 7.
TI=\frac{35}{77}
Multiply 11 and 7 to get 77.
TI=\frac{5}{11}
Reduce the fraction \frac{35}{77} to lowest terms by extracting and canceling out 7.
\frac{TI}{T}=\frac{\frac{5}{11}}{T}
Divide both sides by T.
I=\frac{\frac{5}{11}}{T}
Dividing by T undoes the multiplication by T.
I=\frac{5}{11T}
Divide \frac{5}{11} by T.
TI=\frac{35}{\left(4+7\right)\left(4+3\right)}
Multiply 5 and 7 to get 35.
TI=\frac{35}{11\left(4+3\right)}
Add 4 and 7 to get 11.
TI=\frac{35}{11\times 7}
Add 4 and 3 to get 7.
TI=\frac{35}{77}
Multiply 11 and 7 to get 77.
TI=\frac{5}{11}
Reduce the fraction \frac{35}{77} to lowest terms by extracting and canceling out 7.
IT=\frac{5}{11}
The equation is in standard form.
\frac{IT}{I}=\frac{\frac{5}{11}}{I}
Divide both sides by I.
T=\frac{\frac{5}{11}}{I}
Dividing by I undoes the multiplication by I.
T=\frac{5}{11I}
Divide \frac{5}{11} by I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}