Solve for C (complex solution)
\left\{\begin{matrix}C=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{T}\text{, }&T\neq 0\text{ and }\gamma \neq 0\text{ and }r\neq 0\\C\in \mathrm{C}\text{, }&r\neq 0\text{ and }T=0\text{ and }\gamma =e\end{matrix}\right.
Solve for T (complex solution)
\left\{\begin{matrix}T=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{C}\text{, }&C\neq 0\text{ and }\gamma \neq 0\text{ and }r\neq 0\\T\in \mathrm{C}\text{, }&r\neq 0\text{ and }C=0\text{ and }\gamma =e\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{T}\text{, }&\left(T\neq 0\text{ and }\gamma <e\text{ and }\gamma >0\text{ and }r\neq 0\right)\text{ or }\left(T\neq 0\text{ and }\gamma =e\text{ and }r>0\right)\text{ or }\left(T\neq 0\text{ and }Numerator(r)\text{bmod}2=1\text{ and }\gamma <0\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(T\neq 0\text{ and }Numerator(r)\text{bmod}2=1\text{ and }\gamma >e\text{ and }Denominator(r)\text{bmod}2=1\right)\\C\in \mathrm{R}\text{, }&\gamma =e\text{ and }r>0\text{ and }T=0\end{matrix}\right.
Solve for T
\left\{\begin{matrix}T=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{C}\text{, }&\left(C\neq 0\text{ and }\gamma <e\text{ and }\gamma >0\text{ and }r\neq 0\right)\text{ or }\left(C\neq 0\text{ and }\gamma =e\text{ and }r>0\right)\text{ or }\left(C\neq 0\text{ and }Numerator(r)\text{bmod}2=1\text{ and }\gamma <0\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(C\neq 0\text{ and }Numerator(r)\text{bmod}2=1\text{ and }\gamma >e\text{ and }Denominator(r)\text{bmod}2=1\right)\\T\in \mathrm{R}\text{, }&\gamma =e\text{ and }r>0\text{ and }C=0\end{matrix}\right.
Share
Copied to clipboard
TC=\sqrt[r]{\frac{e}{\gamma }-\frac{\gamma }{\gamma }}\times 100
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\gamma }{\gamma }.
TC=\sqrt[r]{\frac{e-\gamma }{\gamma }}\times 100
Since \frac{e}{\gamma } and \frac{\gamma }{\gamma } have the same denominator, subtract them by subtracting their numerators.
TC=100\sqrt[r]{\frac{e-\gamma }{\gamma }}
The equation is in standard form.
\frac{TC}{T}=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{T}
Divide both sides by T.
C=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{T}
Dividing by T undoes the multiplication by T.
TC=\sqrt[r]{\frac{e}{\gamma }-\frac{\gamma }{\gamma }}\times 100
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\gamma }{\gamma }.
TC=\sqrt[r]{\frac{e-\gamma }{\gamma }}\times 100
Since \frac{e}{\gamma } and \frac{\gamma }{\gamma } have the same denominator, subtract them by subtracting their numerators.
CT=100\sqrt[r]{\frac{e-\gamma }{\gamma }}
The equation is in standard form.
\frac{CT}{C}=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{C}
Divide both sides by C.
T=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{C}
Dividing by C undoes the multiplication by C.
TC=\sqrt[r]{\frac{e}{\gamma }-\frac{\gamma }{\gamma }}\times 100
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\gamma }{\gamma }.
TC=\sqrt[r]{\frac{e-\gamma }{\gamma }}\times 100
Since \frac{e}{\gamma } and \frac{\gamma }{\gamma } have the same denominator, subtract them by subtracting their numerators.
TC=100\sqrt[r]{\frac{e-\gamma }{\gamma }}
The equation is in standard form.
\frac{TC}{T}=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{T}
Divide both sides by T.
C=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{T}
Dividing by T undoes the multiplication by T.
TC=\sqrt[r]{\frac{e}{\gamma }-\frac{\gamma }{\gamma }}\times 100
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\gamma }{\gamma }.
TC=\sqrt[r]{\frac{e-\gamma }{\gamma }}\times 100
Since \frac{e}{\gamma } and \frac{\gamma }{\gamma } have the same denominator, subtract them by subtracting their numerators.
CT=100\sqrt[r]{\frac{e-\gamma }{\gamma }}
The equation is in standard form.
\frac{CT}{C}=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{C}
Divide both sides by C.
T=\frac{100\left(-1+\frac{e}{\gamma }\right)^{\frac{1}{r}}}{C}
Dividing by C undoes the multiplication by C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}