Solve for A
A=-\left(M+T^{2}\right)
T\neq 0
Solve for M
M=-\left(A+T^{2}\right)
T\neq 0
Share
Copied to clipboard
TT-2TT=\left(A+M\right)\times 1
Multiply both sides of the equation by T.
T^{2}-2TT=\left(A+M\right)\times 1
Multiply T and T to get T^{2}.
T^{2}-2T^{2}=\left(A+M\right)\times 1
Multiply T and T to get T^{2}.
-T^{2}=\left(A+M\right)\times 1
Combine T^{2} and -2T^{2} to get -T^{2}.
-T^{2}=A+M
Use the distributive property to multiply A+M by 1.
A+M=-T^{2}
Swap sides so that all variable terms are on the left hand side.
A=-T^{2}-M
Subtract M from both sides.
TT-2TT=\left(A+M\right)\times 1
Multiply both sides of the equation by T.
T^{2}-2TT=\left(A+M\right)\times 1
Multiply T and T to get T^{2}.
T^{2}-2T^{2}=\left(A+M\right)\times 1
Multiply T and T to get T^{2}.
-T^{2}=\left(A+M\right)\times 1
Combine T^{2} and -2T^{2} to get -T^{2}.
-T^{2}=A+M
Use the distributive property to multiply A+M by 1.
A+M=-T^{2}
Swap sides so that all variable terms are on the left hand side.
M=-T^{2}-A
Subtract A from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}