Evaluate
T = \frac{1}{2} = 0.5
Expand
T = \frac{1}{2} = 0.5
Share
Copied to clipboard
T-\frac{\frac{1}{5}\times \frac{1}{10}+\left(\frac{1}{10}\right)^{2}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
T-\frac{\frac{1}{50}+\left(\frac{1}{10}\right)^{2}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Multiply \frac{1}{5} and \frac{1}{10} to get \frac{1}{50}.
T-\frac{\frac{1}{50}+\frac{1}{100}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Calculate \frac{1}{10} to the power of 2 and get \frac{1}{100}.
T-\frac{\frac{3}{100}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Add \frac{1}{50} and \frac{1}{100} to get \frac{3}{100}.
T-\frac{\frac{3}{100}}{\left(\frac{1}{5}\right)^{2}-\frac{1}{10}}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
T-\frac{\frac{3}{100}}{\frac{1}{25}-\frac{1}{10}}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
T-\frac{\frac{3}{100}}{-\frac{3}{50}}
Subtract \frac{1}{10} from \frac{1}{25} to get -\frac{3}{50}.
T-\frac{3}{100}\left(-\frac{50}{3}\right)
Divide \frac{3}{100} by -\frac{3}{50} by multiplying \frac{3}{100} by the reciprocal of -\frac{3}{50}.
T-\left(-\frac{1}{2}\right)
Multiply \frac{3}{100} and -\frac{50}{3} to get -\frac{1}{2}.
T+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
T-\frac{\frac{1}{5}\times \frac{1}{10}+\left(\frac{1}{10}\right)^{2}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
T-\frac{\frac{1}{50}+\left(\frac{1}{10}\right)^{2}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Multiply \frac{1}{5} and \frac{1}{10} to get \frac{1}{50}.
T-\frac{\frac{1}{50}+\frac{1}{100}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Calculate \frac{1}{10} to the power of 2 and get \frac{1}{100}.
T-\frac{\frac{3}{100}}{\left(\frac{2}{10}\right)^{2}-\frac{1}{10}}
Add \frac{1}{50} and \frac{1}{100} to get \frac{3}{100}.
T-\frac{\frac{3}{100}}{\left(\frac{1}{5}\right)^{2}-\frac{1}{10}}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
T-\frac{\frac{3}{100}}{\frac{1}{25}-\frac{1}{10}}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
T-\frac{\frac{3}{100}}{-\frac{3}{50}}
Subtract \frac{1}{10} from \frac{1}{25} to get -\frac{3}{50}.
T-\frac{3}{100}\left(-\frac{50}{3}\right)
Divide \frac{3}{100} by -\frac{3}{50} by multiplying \frac{3}{100} by the reciprocal of -\frac{3}{50}.
T-\left(-\frac{1}{2}\right)
Multiply \frac{3}{100} and -\frac{50}{3} to get -\frac{1}{2}.
T+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}