Evaluate
\sqrt{2}T
Differentiate w.r.t. T
\sqrt{2} = 1.414213562
Share
Copied to clipboard
T\times \frac{8\sqrt{5}-\sqrt{80}}{\sqrt{40}}
Factor 320=8^{2}\times 5. Rewrite the square root of the product \sqrt{8^{2}\times 5} as the product of square roots \sqrt{8^{2}}\sqrt{5}. Take the square root of 8^{2}.
T\times \frac{8\sqrt{5}-4\sqrt{5}}{\sqrt{40}}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
T\times \frac{4\sqrt{5}}{\sqrt{40}}
Combine 8\sqrt{5} and -4\sqrt{5} to get 4\sqrt{5}.
T\times \frac{4\sqrt{5}}{2\sqrt{10}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
T\times \frac{2\sqrt{5}}{\sqrt{10}}
Cancel out 2 in both numerator and denominator.
T\times \frac{2\sqrt{5}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{5}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
T\times \frac{2\sqrt{5}\sqrt{10}}{10}
The square of \sqrt{10} is 10.
T\times \frac{2\sqrt{5}\sqrt{5}\sqrt{2}}{10}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
T\times \frac{2\times 5\sqrt{2}}{10}
Multiply \sqrt{5} and \sqrt{5} to get 5.
T\times \frac{10\sqrt{2}}{10}
Multiply 2 and 5 to get 10.
T\sqrt{2}
Cancel out 10 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}