Solve for T
\left\{\begin{matrix}T=\frac{4gm}{\cos(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\T\in \mathrm{R}\text{, }&\left(m=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\right)\text{ or }\left(g=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\right)\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{T\cos(\theta )}{4m}\text{, }&m\neq 0\\g\in \mathrm{R}\text{, }&\left(T=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\right)\text{ and }m=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\cos(\theta )T=4gm
The equation is in standard form.
\frac{\cos(\theta )T}{\cos(\theta )}=\frac{4gm}{\cos(\theta )}
Divide both sides by \cos(\theta ).
T=\frac{4gm}{\cos(\theta )}
Dividing by \cos(\theta ) undoes the multiplication by \cos(\theta ).
4mg=T\cos(\theta )
Swap sides so that all variable terms are on the left hand side.
\frac{4mg}{4m}=\frac{T\cos(\theta )}{4m}
Divide both sides by 4m.
g=\frac{T\cos(\theta )}{4m}
Dividing by 4m undoes the multiplication by 4m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}