Solve for M
\left\{\begin{matrix}M=\left(\frac{T}{f}\right)^{2}n\text{, }&\left(f<0\text{ or }T\geq 0\right)\text{ and }\left(f>0\text{ or }T\leq 0\right)\text{ and }f\neq 0\text{ and }n\neq 0\\M\geq 0\text{, }&T=0\text{ and }f=0\text{ and }n>0\\M\leq 0\text{, }&T=0\text{ and }f=0\text{ and }n<0\\M=0\text{, }&n\neq 0\text{ and }T=0\text{ and }f=0\end{matrix}\right.
Solve for M (complex solution)
\left\{\begin{matrix}M=\left(\frac{T}{f}\right)^{2}n\text{, }&f\neq 0\text{ and }\left(T=0\text{ or }|arg(\sqrt{\frac{T^{2}}{f^{2}}}f)-arg(T)|<\pi \right)\text{ and }n\neq 0\\M\in \mathrm{C}\text{, }&T=0\text{ and }f=0\text{ and }n\neq 0\end{matrix}\right.
Solve for T (complex solution)
T=\sqrt{\frac{M}{n}}f
n\neq 0
Solve for T
T=\sqrt{\frac{M}{n}}f
\left(M\geq 0\text{ and }n>0\right)\text{ or }\left(M\leq 0\text{ and }n<0\right)
Share
Copied to clipboard
f\sqrt{\frac{M}{n}}=T
Swap sides so that all variable terms are on the left hand side.
\frac{f\sqrt{\frac{1}{n}M}}{f}=\frac{T}{f}
Divide both sides by f.
\sqrt{\frac{1}{n}M}=\frac{T}{f}
Dividing by f undoes the multiplication by f.
\frac{1}{n}M=\frac{T^{2}}{f^{2}}
Square both sides of the equation.
\frac{\frac{1}{n}Mn}{1}=\frac{T^{2}}{f^{2}\times \frac{1}{n}}
Divide both sides by n^{-1}.
M=\frac{T^{2}}{f^{2}\times \frac{1}{n}}
Dividing by n^{-1} undoes the multiplication by n^{-1}.
M=\frac{nT^{2}}{f^{2}}
Divide \frac{T^{2}}{f^{2}} by n^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}