Solve for W
\left\{\begin{matrix}W=\frac{T}{XYZ}\text{, }&Z\neq 0\text{ and }Y\neq 0\text{ and }X\neq 0\\W\in \mathrm{R}\text{, }&\left(Z=0\text{ or }Y=0\text{ or }X=0\right)\text{ and }T=0\end{matrix}\right.
Solve for T
T=WXYZ
Share
Copied to clipboard
WXYZ=T
Swap sides so that all variable terms are on the left hand side.
XYZW=T
The equation is in standard form.
\frac{XYZW}{XYZ}=\frac{T}{XYZ}
Divide both sides by XYZ.
W=\frac{T}{XYZ}
Dividing by XYZ undoes the multiplication by XYZ.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}