Solve for L
L=245\times \left(\frac{T}{\pi }\right)^{2}
T\geq 0
Solve for L (complex solution)
L=245\times \left(\frac{T}{\pi }\right)^{2}
|\frac{arg(T^{2})}{2}-arg(T)|<\pi \text{ or }T=0
Solve for T (complex solution)
T=\frac{\pi \sqrt{5L}}{35}
Solve for T
T=\frac{\pi \sqrt{5L}}{35}
L\geq 0
Share
Copied to clipboard
2\pi \sqrt{\frac{L}{980}}=T
Swap sides so that all variable terms are on the left hand side.
\frac{2\pi \sqrt{\frac{1}{980}L}}{2\pi }=\frac{T}{2\pi }
Divide both sides by 2\pi .
\sqrt{\frac{1}{980}L}=\frac{T}{2\pi }
Dividing by 2\pi undoes the multiplication by 2\pi .
\frac{1}{980}L=\frac{T^{2}}{4\pi ^{2}}
Square both sides of the equation.
\frac{\frac{1}{980}L}{\frac{1}{980}}=\frac{T^{2}}{\frac{1}{980}\times 4\pi ^{2}}
Multiply both sides by 980.
L=\frac{T^{2}}{\frac{1}{980}\times 4\pi ^{2}}
Dividing by \frac{1}{980} undoes the multiplication by \frac{1}{980}.
L=\frac{245T^{2}}{\pi ^{2}}
Divide \frac{T^{2}}{4\pi ^{2}} by \frac{1}{980} by multiplying \frac{T^{2}}{4\pi ^{2}} by the reciprocal of \frac{1}{980}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}