Solve for T
T = \frac{9}{5} = 1\frac{4}{5} = 1.8
Assign T
T≔\frac{9}{5}
Share
Copied to clipboard
T=\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
T=\left(\frac{3+2}{6}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
T=\left(\frac{5}{6}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Add 3 and 2 to get 5.
T=\left(\frac{10}{12}+\frac{3}{12}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
T=\frac{10+3}{12}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
T=\frac{13}{12}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Add 10 and 3 to get 13.
T=\frac{13}{12}\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
T=\frac{13}{12}\left(\frac{3+2}{6}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
T=\frac{13}{12}\left(\frac{5}{6}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Add 3 and 2 to get 5.
T=\frac{13}{12}\left(\frac{10}{12}+\frac{3}{12}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
T=\frac{13}{12}\left(\frac{10+3}{12}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
T=\frac{13}{12}\left(\frac{13}{12}-\frac{1}{5}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Add 10 and 3 to get 13.
T=\frac{13}{12}\left(\frac{65}{60}-\frac{12}{60}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{13}{12} and \frac{1}{5} to fractions with denominator 60.
T=\frac{13}{12}\left(\frac{65-12}{60}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{65}{60} and \frac{12}{60} have the same denominator, subtract them by subtracting their numerators.
T=\frac{13}{12}\left(\frac{53}{60}-\frac{1}{6}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Subtract 12 from 65 to get 53.
T=\frac{13}{12}\left(\frac{53}{60}-\frac{10}{60}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 60 and 6 is 60. Convert \frac{53}{60} and \frac{1}{6} to fractions with denominator 60.
T=\frac{13}{12}\left(\frac{53-10}{60}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{53}{60} and \frac{10}{60} have the same denominator, subtract them by subtracting their numerators.
T=\frac{13}{12}\left(\frac{43}{60}+1\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Subtract 10 from 53 to get 43.
T=\frac{13}{12}\left(\frac{43}{60}+\frac{60}{60}\right)+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Convert 1 to fraction \frac{60}{60}.
T=\frac{13}{12}\times \frac{43+60}{60}+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{43}{60} and \frac{60}{60} have the same denominator, add them by adding their numerators.
T=\frac{13}{12}\times \frac{103}{60}+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Add 43 and 60 to get 103.
T=\frac{13\times 103}{12\times 60}+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Multiply \frac{13}{12} times \frac{103}{60} by multiplying numerator times numerator and denominator times denominator.
T=\frac{1339}{720}+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Do the multiplications in the fraction \frac{13\times 103}{12\times 60}.
T=\frac{1339}{720}+\left(\frac{2}{2}-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Convert 1 to fraction \frac{2}{2}.
T=\frac{1339}{720}+\left(\frac{2-1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
T=\frac{1339}{720}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Subtract 1 from 2 to get 1.
T=\frac{1339}{720}+\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
T=\frac{1339}{720}+\left(\frac{3-2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
T=\frac{1339}{720}+\left(\frac{1}{6}-\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Subtract 2 from 3 to get 1.
T=\frac{1339}{720}+\left(\frac{2}{12}-\frac{3}{12}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{1}{6} and \frac{1}{4} to fractions with denominator 12.
T=\frac{1339}{720}+\frac{2-3}{12}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{2}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Subtract 3 from 2 to get -1.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{3+2}{6}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{5}{6}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)
Add 3 and 2 to get 5.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{10}{12}+\frac{3}{12}-\frac{1}{5}-\frac{1}{6}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{10+3}{12}-\frac{1}{5}-\frac{1}{6}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{13}{12}-\frac{1}{5}-\frac{1}{6}\right)
Add 10 and 3 to get 13.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{65}{60}-\frac{12}{60}-\frac{1}{6}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{13}{12} and \frac{1}{5} to fractions with denominator 60.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{65-12}{60}-\frac{1}{6}\right)
Since \frac{65}{60} and \frac{12}{60} have the same denominator, subtract them by subtracting their numerators.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{53}{60}-\frac{1}{6}\right)
Subtract 12 from 65 to get 53.
T=\frac{1339}{720}-\frac{1}{12}\left(\frac{53}{60}-\frac{10}{60}\right)
Least common multiple of 60 and 6 is 60. Convert \frac{53}{60} and \frac{1}{6} to fractions with denominator 60.
T=\frac{1339}{720}-\frac{1}{12}\times \frac{53-10}{60}
Since \frac{53}{60} and \frac{10}{60} have the same denominator, subtract them by subtracting their numerators.
T=\frac{1339}{720}-\frac{1}{12}\times \frac{43}{60}
Subtract 10 from 53 to get 43.
T=\frac{1339}{720}+\frac{-43}{12\times 60}
Multiply -\frac{1}{12} times \frac{43}{60} by multiplying numerator times numerator and denominator times denominator.
T=\frac{1339}{720}+\frac{-43}{720}
Do the multiplications in the fraction \frac{-43}{12\times 60}.
T=\frac{1339}{720}-\frac{43}{720}
Fraction \frac{-43}{720} can be rewritten as -\frac{43}{720} by extracting the negative sign.
T=\frac{1339-43}{720}
Since \frac{1339}{720} and \frac{43}{720} have the same denominator, subtract them by subtracting their numerators.
T=\frac{1296}{720}
Subtract 43 from 1339 to get 1296.
T=\frac{9}{5}
Reduce the fraction \frac{1296}{720} to lowest terms by extracting and canceling out 144.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}