Solve for T
T = \frac{8932 \sqrt{13}}{1887} \approx 17.066658184
Assign T
T≔\frac{8932\sqrt{13}}{1887}
Quiz
Linear Equation
5 problems similar to:
T = \frac { 124.32 - 35 } { \frac { 37.74 } { \sqrt { 52 } } }
Share
Copied to clipboard
T=\frac{89.32}{\frac{37.74}{\sqrt{52}}}
Subtract 35 from 124.32 to get 89.32.
T=\frac{89.32}{\frac{37.74}{2\sqrt{13}}}
Factor 52=2^{2}\times 13. Rewrite the square root of the product \sqrt{2^{2}\times 13} as the product of square roots \sqrt{2^{2}}\sqrt{13}. Take the square root of 2^{2}.
T=\frac{89.32}{\frac{37.74\sqrt{13}}{2\left(\sqrt{13}\right)^{2}}}
Rationalize the denominator of \frac{37.74}{2\sqrt{13}} by multiplying numerator and denominator by \sqrt{13}.
T=\frac{89.32}{\frac{37.74\sqrt{13}}{2\times 13}}
The square of \sqrt{13} is 13.
T=\frac{89.32}{\frac{37.74\sqrt{13}}{26}}
Multiply 2 and 13 to get 26.
T=\frac{89.32}{\frac{1887}{1300}\sqrt{13}}
Divide 37.74\sqrt{13} by 26 to get \frac{1887}{1300}\sqrt{13}.
T=\frac{89.32\sqrt{13}}{\frac{1887}{1300}\left(\sqrt{13}\right)^{2}}
Rationalize the denominator of \frac{89.32}{\frac{1887}{1300}\sqrt{13}} by multiplying numerator and denominator by \sqrt{13}.
T=\frac{89.32\sqrt{13}}{\frac{1887}{1300}\times 13}
The square of \sqrt{13} is 13.
T=\frac{89.32\sqrt{13}}{18.87}
Multiply \frac{1887}{1300} and 13 to get 18.87.
T=\frac{8932}{1887}\sqrt{13}
Divide 89.32\sqrt{13} by 18.87 to get \frac{8932}{1887}\sqrt{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}