Solve for R
\left\{\begin{matrix}R=\frac{R_{300}\left(T-\alpha \right)}{\beta +\gamma }\text{, }&\beta \neq -\gamma \text{ and }R_{300}\neq 0\\R\in \mathrm{R}\text{, }&T=\alpha \text{ and }\beta =-\gamma \text{ and }R_{300}\neq 0\end{matrix}\right.
Solve for R_300
\left\{\begin{matrix}R_{300}=-\frac{R\left(\beta +\gamma \right)}{\alpha -T}\text{, }&\beta \neq -\gamma \text{ and }R\neq 0\text{ and }T\neq \alpha \\R_{300}\neq 0\text{, }&T=\alpha \text{ and }\left(\beta =-\gamma \text{ or }R=0\right)\end{matrix}\right.
Share
Copied to clipboard
TR_{300}=R_{300}\alpha +\beta R+\gamma R
Multiply both sides of the equation by R_{300}.
R_{300}\alpha +\beta R+\gamma R=TR_{300}
Swap sides so that all variable terms are on the left hand side.
\beta R+\gamma R=TR_{300}-R_{300}\alpha
Subtract R_{300}\alpha from both sides.
\left(\beta +\gamma \right)R=TR_{300}-R_{300}\alpha
Combine all terms containing R.
\left(\beta +\gamma \right)R=R_{300}T-R_{300}\alpha
The equation is in standard form.
\frac{\left(\beta +\gamma \right)R}{\beta +\gamma }=\frac{R_{300}\left(T-\alpha \right)}{\beta +\gamma }
Divide both sides by \beta +\gamma .
R=\frac{R_{300}\left(T-\alpha \right)}{\beta +\gamma }
Dividing by \beta +\gamma undoes the multiplication by \beta +\gamma .
TR_{300}=R_{300}\alpha +\beta R+\gamma R
Variable R_{300} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R_{300}.
TR_{300}-R_{300}\alpha =\beta R+\gamma R
Subtract R_{300}\alpha from both sides.
\left(T-\alpha \right)R_{300}=\beta R+\gamma R
Combine all terms containing R_{300}.
\left(T-\alpha \right)R_{300}=R\beta +R\gamma
The equation is in standard form.
\frac{\left(T-\alpha \right)R_{300}}{T-\alpha }=\frac{R\left(\beta +\gamma \right)}{T-\alpha }
Divide both sides by T-\alpha .
R_{300}=\frac{R\left(\beta +\gamma \right)}{T-\alpha }
Dividing by T-\alpha undoes the multiplication by T-\alpha .
R_{300}=\frac{R\left(\beta +\gamma \right)}{T-\alpha }\text{, }R_{300}\neq 0
Variable R_{300} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}