Evaluate
\frac{4T}{27}+\frac{1}{4}
Factor
\frac{16T+27}{108}
Share
Copied to clipboard
\frac{T}{\frac{9}{4}}\times 3^{-1}+\frac{\left(\pi -2109\right)^{0}}{\left(\frac{1}{4}\right)^{-1}}
Calculate \frac{2}{3} to the power of -2 and get \frac{9}{4}.
\frac{T\times 4}{9}\times 3^{-1}+\frac{\left(\pi -2109\right)^{0}}{\left(\frac{1}{4}\right)^{-1}}
Divide T by \frac{9}{4} by multiplying T by the reciprocal of \frac{9}{4}.
\frac{T\times 4}{9}\times \frac{1}{3}+\frac{\left(\pi -2109\right)^{0}}{\left(\frac{1}{4}\right)^{-1}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{T\times 4}{9\times 3}+\frac{\left(\pi -2109\right)^{0}}{\left(\frac{1}{4}\right)^{-1}}
Multiply \frac{T\times 4}{9} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{T\times 4}{9\times 3}+\frac{1}{\left(\frac{1}{4}\right)^{-1}}
Calculate \pi -2109 to the power of 0 and get 1.
\frac{T\times 4}{9\times 3}+\frac{1}{4}
Calculate \frac{1}{4} to the power of -1 and get 4.
\frac{4T\times 4}{108}+\frac{27}{108}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9\times 3 and 4 is 108. Multiply \frac{T\times 4}{9\times 3} times \frac{4}{4}. Multiply \frac{1}{4} times \frac{27}{27}.
\frac{4T\times 4+27}{108}
Since \frac{4T\times 4}{108} and \frac{27}{108} have the same denominator, add them by adding their numerators.
\frac{16T+27}{108}
Do the multiplications in 4T\times 4+27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}