Solve for I_1 (complex solution)
\left\{\begin{matrix}I_{1}=\frac{250Rs}{S}\text{, }&S\neq 0\\I_{1}\in \mathrm{C}\text{, }&\left(s=0\text{ or }R=0\right)\text{ and }S=0\end{matrix}\right.
Solve for R (complex solution)
\left\{\begin{matrix}R=\frac{I_{1}S}{250s}\text{, }&s\neq 0\\R\in \mathrm{C}\text{, }&\left(S=0\text{ or }I_{1}=0\right)\text{ and }s=0\end{matrix}\right.
Solve for I_1
\left\{\begin{matrix}I_{1}=\frac{250Rs}{S}\text{, }&S\neq 0\\I_{1}\in \mathrm{R}\text{, }&\left(s=0\text{ or }R=0\right)\text{ and }S=0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=\frac{I_{1}S}{250s}\text{, }&s\neq 0\\R\in \mathrm{R}\text{, }&\left(S=0\text{ or }I_{1}=0\right)\text{ and }s=0\end{matrix}\right.
Share
Copied to clipboard
100SI_{1}=Rs\times 5000\times 5\times 1
Multiply both sides of the equation by 100.
100SI_{1}=Rs\times 25000\times 1
Multiply 5000 and 5 to get 25000.
100SI_{1}=Rs\times 25000
Multiply 25000 and 1 to get 25000.
100SI_{1}=25000Rs
The equation is in standard form.
\frac{100SI_{1}}{100S}=\frac{25000Rs}{100S}
Divide both sides by 100S.
I_{1}=\frac{25000Rs}{100S}
Dividing by 100S undoes the multiplication by 100S.
I_{1}=\frac{250Rs}{S}
Divide 25000Rs by 100S.
100SI_{1}=Rs\times 5000\times 5\times 1
Multiply both sides of the equation by 100.
100SI_{1}=Rs\times 25000\times 1
Multiply 5000 and 5 to get 25000.
100SI_{1}=Rs\times 25000
Multiply 25000 and 1 to get 25000.
Rs\times 25000=100SI_{1}
Swap sides so that all variable terms are on the left hand side.
25000sR=100I_{1}S
The equation is in standard form.
\frac{25000sR}{25000s}=\frac{100I_{1}S}{25000s}
Divide both sides by 25000s.
R=\frac{100I_{1}S}{25000s}
Dividing by 25000s undoes the multiplication by 25000s.
R=\frac{I_{1}S}{250s}
Divide 100SI_{1} by 25000s.
100SI_{1}=Rs\times 5000\times 5\times 1
Multiply both sides of the equation by 100.
100SI_{1}=Rs\times 25000\times 1
Multiply 5000 and 5 to get 25000.
100SI_{1}=Rs\times 25000
Multiply 25000 and 1 to get 25000.
100SI_{1}=25000Rs
The equation is in standard form.
\frac{100SI_{1}}{100S}=\frac{25000Rs}{100S}
Divide both sides by 100S.
I_{1}=\frac{25000Rs}{100S}
Dividing by 100S undoes the multiplication by 100S.
I_{1}=\frac{250Rs}{S}
Divide 25000Rs by 100S.
100SI_{1}=Rs\times 5000\times 5\times 1
Multiply both sides of the equation by 100.
100SI_{1}=Rs\times 25000\times 1
Multiply 5000 and 5 to get 25000.
100SI_{1}=Rs\times 25000
Multiply 25000 and 1 to get 25000.
Rs\times 25000=100SI_{1}
Swap sides so that all variable terms are on the left hand side.
25000sR=100I_{1}S
The equation is in standard form.
\frac{25000sR}{25000s}=\frac{100I_{1}S}{25000s}
Divide both sides by 25000s.
R=\frac{100I_{1}S}{25000s}
Dividing by 25000s undoes the multiplication by 25000s.
R=\frac{I_{1}S}{250s}
Divide 100SI_{1} by 25000s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}